
CS 61A Lecture 11

Wednesday, February 18

Announcements

2

Announcements

• Optional Hog Contest due Wednesday 2/18 @ 11:59pm

2

Announcements

• Optional Hog Contest due Wednesday 2/18 @ 11:59pm

• Homework 3 due Thursday 2/19 @ 11:59pm

2

Announcements

• Optional Hog Contest due Wednesday 2/18 @ 11:59pm

• Homework 3 due Thursday 2/19 @ 11:59pm

• Project 2 due Thursday 2/26 @ 11:59pm

2

Announcements

• Optional Hog Contest due Wednesday 2/18 @ 11:59pm

• Homework 3 due Thursday 2/19 @ 11:59pm

• Project 2 due Thursday 2/26 @ 11:59pm

§Bonus point for early submission by Wednesday 2/25 @ 11:59pm!

2

Box-and-Pointer Notation

The Closure Property of Data Types

4

The Closure Property of Data Types

•A method for combining data values satisfies the closure property if: 
 
 The result of combination can itself be combined using the same method

4

The Closure Property of Data Types

•A method for combining data values satisfies the closure property if: 
 
 The result of combination can itself be combined using the same method

•Closure is powerful because it permits us to create hierarchical structures

4

The Closure Property of Data Types

•A method for combining data values satisfies the closure property if: 
 
 The result of combination can itself be combined using the same method

•Closure is powerful because it permits us to create hierarchical structures

•Hierarchical structures are made up of parts, which themselves are made up
of parts, and so on

4

The Closure Property of Data Types

•A method for combining data values satisfies the closure property if: 
 
 The result of combination can itself be combined using the same method

•Closure is powerful because it permits us to create hierarchical structures

•Hierarchical structures are made up of parts, which themselves are made up
of parts, and so on

Lists can contain lists as elements (in addition to anything else)

4

Box-and-Pointer Notation in Environment Diagrams

5Interactive Diagram

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

5Interactive Diagram

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

5Interactive Diagram

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

5Interactive Diagram

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

5Interactive Diagram

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

6Interactive Diagram

Sequence Operations

Membership & Slicing

Python sequences have operators for membership and slicing

8

Membership & Slicing

Python sequences have operators for membership and slicing

Membership.

8

Membership & Slicing

>>> digits = [1, 8, 2, 8]
>>> 2 in digits
True
>>> 1828 not in digits
True

Python sequences have operators for membership and slicing

Membership.

8

Membership & Slicing

>>> digits = [1, 8, 2, 8]
>>> 2 in digits
True
>>> 1828 not in digits
True

Python sequences have operators for membership and slicing

Membership.

Slicing.

8

Membership & Slicing

>>> digits = [1, 8, 2, 8]
>>> 2 in digits
True
>>> 1828 not in digits
True

>>> digits[0:2]
[1, 8]
>>> digits[1:]
[8, 2, 8]

Python sequences have operators for membership and slicing

Membership.

Slicing.

8

Membership & Slicing

>>> digits = [1, 8, 2, 8]
>>> 2 in digits
True
>>> 1828 not in digits
True

>>> digits[0:2]
[1, 8]
>>> digits[1:]
[8, 2, 8]

Python sequences have operators for membership and slicing

Membership.

Slicing.

8

Slicing creates a new object

Membership & Slicing

>>> digits = [1, 8, 2, 8]
>>> 2 in digits
True
>>> 1828 not in digits
True

>>> digits[0:2]
[1, 8]
>>> digits[1:]
[8, 2, 8]

Python sequences have operators for membership and slicing

Membership.

Slicing.

8

Slicing creates a new object

Membership & Slicing

>>> digits = [1, 8, 2, 8]
>>> 2 in digits
True
>>> 1828 not in digits
True

>>> digits[0:2]
[1, 8]
>>> digits[1:]
[8, 2, 8]

Python sequences have operators for membership and slicing

Membership.

Slicing.

8

Slicing creates a new object

Trees

Tree Abstraction

10

Tree Abstraction

10

5

2

1

3

1

0 1 1

0 1

2

1 1

0 1

Tree Abstraction

10

A tree has a root value and a sequence of branches; each branch is a tree

5

2

1

3

1

0 1 1

0 1

2

1 1

0 1

Tree Abstraction

10

A tree has a root value and a sequence of branches; each branch is a tree

5

2

1

3

1

0 1 1

0 1

2

1 1

0 1

Root

Tree Abstraction

10

A tree has a root value and a sequence of branches; each branch is a tree

5

2

1

3

1

0 1 1

0 1

2

1 1

0 1

Root

Branch

Tree Abstraction

10

A tree has a root value and a sequence of branches; each branch is a tree

A tree with zero branches is called a leaf

5

2

1

3

1

0 1 1

0 1

2

1 1

0 1

Root

Branch

Tree Abstraction

10

A tree has a root value and a sequence of branches; each branch is a tree

A tree with zero branches is called a leaf

5

2

1

3

1

0 1 1

0 1

2

1 1

0 1

Root

Leaf

Branch

Tree Abstraction

10

A tree has a root value and a sequence of branches; each branch is a tree

A tree with zero branches is called a leaf

5

2

1

3

1

0 1 1

0 1

2

1 1

0 1

Root

Leaf

Branch

Tree Abstraction

10

A tree has a root value and a sequence of branches; each branch is a tree

A tree with zero branches is called a leaf

The root values of sub-trees within a tree are often called node values or nodes

5

2

1

3

1

0 1 1

0 1

2

1 1

0 1

Root

Leaf

Branch

Tree Abstraction

10

A tree has a root value and a sequence of branches; each branch is a tree

A tree with zero branches is called a leaf

The root values of sub-trees within a tree are often called node values or nodes

5

2

1

3

1

0 1 1

0 1

2

1 1

0 1

Root

Leaf

Branch

Sub-tree

Tree Abstraction

10

A tree has a root value and a sequence of branches; each branch is a tree

A tree with zero branches is called a leaf

The root values of sub-trees within a tree are often called node values or nodes

5

2

1

3

1

0 1 1

0 1

2

1 1

0 1

Root

Node
Leaf

Branch

Sub-tree

Implementing the Tree Abstraction

11

Implementing the Tree Abstraction

A tree has a root value and
a sequence of branches;
each branch is a tree

11

Implementing the Tree Abstraction

A tree has a root value and
a sequence of branches;
each branch is a tree

11

2

1

3

1

1

Implementing the Tree Abstraction

A tree has a root value and
a sequence of branches;
each branch is a tree

11

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])

2

1

3

1

1

Implementing the Tree Abstraction

A tree has a root value and
a sequence of branches;
each branch is a tree

11

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

Implementing the Tree Abstraction

A tree has a root value and
a sequence of branches;
each branch is a tree

11

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(root, branches=[]):

Implementing the Tree Abstraction

A tree has a root value and
a sequence of branches;
each branch is a tree

11

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(root, branches=[]):
 return [root] + branches

Implementing the Tree Abstraction

A tree has a root value and
a sequence of branches;
each branch is a tree

11

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(root, branches=[]):
 return [root] + branches

def root(tree):

Implementing the Tree Abstraction

A tree has a root value and
a sequence of branches;
each branch is a tree

11

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(root, branches=[]):
 return [root] + branches

def root(tree):
 return tree[0]

Implementing the Tree Abstraction

A tree has a root value and
a sequence of branches;
each branch is a tree

11

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(root, branches=[]):
 return [root] + branches

def root(tree):
 return tree[0]

def branches(tree):

Implementing the Tree Abstraction

A tree has a root value and
a sequence of branches;
each branch is a tree

11

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(root, branches=[]):
 return [root] + branches

def root(tree):
 return tree[0]

def branches(tree):
 return tree[1:]

Implementing the Tree Abstraction

A tree has a root value and
a sequence of branches;
each branch is a tree

12

 for branch in branches:
 assert is_tree(branch)
 return [root] + list(branches)

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def root(tree):
 return tree[0]
!

def branches(tree):
 return tree[1:]

def tree(root, branches=[]):

Implementing the Tree Abstraction

A tree has a root value and
a sequence of branches;
each branch is a tree

12

 for branch in branches:
 assert is_tree(branch)
 return [root] + list(branches)

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

Creates a list
from a sequence

of branches

def root(tree):
 return tree[0]
!

def branches(tree):
 return tree[1:]

def tree(root, branches=[]):

Implementing the Tree Abstraction

A tree has a root value and
a sequence of branches;
each branch is a tree

12

 for branch in branches:
 assert is_tree(branch)
 return [root] + list(branches)

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

Creates a list
from a sequence

of branches

def root(tree):
 return tree[0]
!

def branches(tree):
 return tree[1:]

def tree(root, branches=[]):
Verifies the

tree definition

Implementing the Tree Abstraction

A tree has a root value and
a sequence of branches;
each branch is a tree

12

 for branch in branches:
 assert is_tree(branch)
 return [root] + list(branches)

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

Creates a list
from a sequence

of branches

def root(tree):
 return tree[0]
!

def branches(tree):
 return tree[1:]

def is_tree(tree):
 if type(tree) != list or len(tree) < 1:
 return False
 for branch in branches(tree):
 if not is_tree(branch):
 return False
 return True

def tree(root, branches=[]):
Verifies the

tree definition

Implementing the Tree Abstraction

A tree has a root value and
a sequence of branches;
each branch is a tree

12

 for branch in branches:
 assert is_tree(branch)
 return [root] + list(branches)

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1
Verifies that
tree is bound

to a list

Creates a list
from a sequence

of branches

def root(tree):
 return tree[0]
!

def branches(tree):
 return tree[1:]

def is_tree(tree):
 if type(tree) != list or len(tree) < 1:
 return False
 for branch in branches(tree):
 if not is_tree(branch):
 return False
 return True

def tree(root, branches=[]):
Verifies the

tree definition

Implementing the Tree Abstraction

A tree has a root value and
a sequence of branches;
each branch is a tree

12

 for branch in branches:
 assert is_tree(branch)
 return [root] + list(branches)

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def is_leaf(tree):
 return not branches(tree)

Verifies that
tree is bound

to a list

Creates a list
from a sequence

of branches

def root(tree):
 return tree[0]
!

def branches(tree):
 return tree[1:]

def is_tree(tree):
 if type(tree) != list or len(tree) < 1:
 return False
 for branch in branches(tree):
 if not is_tree(branch):
 return False
 return True

def tree(root, branches=[]):
Verifies the

tree definition

Implementing the Tree Abstraction

A tree has a root value and
a sequence of branches;
each branch is a tree

(Demo)

12

 for branch in branches:
 assert is_tree(branch)
 return [root] + list(branches)

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def is_leaf(tree):
 return not branches(tree)

Verifies that
tree is bound

to a list

Creates a list
from a sequence

of branches

def root(tree):
 return tree[0]
!

def branches(tree):
 return tree[1:]

def is_tree(tree):
 if type(tree) != list or len(tree) < 1:
 return False
 for branch in branches(tree):
 if not is_tree(branch):
 return False
 return True

def tree(root, branches=[]):
Verifies the

tree definition

Tree Processing Uses Recursion

13

Tree Processing Uses Recursion

13

def count_leaves(tree):

 """Count the leaves of a tree."""

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

13

def count_leaves(tree):

 """Count the leaves of a tree."""

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

13

def count_leaves(tree):

 """Count the leaves of a tree."""

 if is_leaf(tree):

 return 1

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

13

def count_leaves(tree):

 """Count the leaves of a tree."""

 if is_leaf(tree):

 return 1

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

13

def count_leaves(tree):

 """Count the leaves of a tree."""

 if is_leaf(tree):

 return 1

 else:

 branch_counts = [count_leaves(b) for b in tree]

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

13

def count_leaves(tree):

 """Count the leaves of a tree."""

 if is_leaf(tree):

 return 1

 else:

 branch_counts = [count_leaves(b) for b in tree]

 return sum(branch_counts)

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

13

(Demo)

def count_leaves(tree):

 """Count the leaves of a tree."""

 if is_leaf(tree):

 return 1

 else:

 branch_counts = [count_leaves(b) for b in tree]

 return sum(branch_counts)

Discussion Question

14

Discussion Question

Implement leaves, which returns a list of the leaf values of a tree

14

Discussion Question

Implement leaves, which returns a list of the leaf values of a tree

14

def leaves(tree):
 """Return a list containing the leaves of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """

Discussion Question

Implement leaves, which returns a list of the leaf values of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

14

def leaves(tree):
 """Return a list containing the leaves of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """

Discussion Question

Implement leaves, which returns a list of the leaf values of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

14

def leaves(tree):
 """Return a list containing the leaves of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """

>>> sum([[1]], [])

Discussion Question

Implement leaves, which returns a list of the leaf values of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

14

def leaves(tree):
 """Return a list containing the leaves of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """

>>> sum([[1]], [])
[1]

Discussion Question

Implement leaves, which returns a list of the leaf values of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

14

def leaves(tree):
 """Return a list containing the leaves of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """

>>> sum([[1]], [])
[1]
>>> sum([[[1]], [2]], [])

Discussion Question

Implement leaves, which returns a list of the leaf values of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

14

def leaves(tree):
 """Return a list containing the leaves of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """

>>> sum([[1]], [])
[1]
>>> sum([[[1]], [2]], [])
[[1], 2]

Discussion Question

Implement leaves, which returns a list of the leaf values of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

14

def leaves(tree):
 """Return a list containing the leaves of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """

>>> sum([[1]], [])
[1]
>>> sum([[[1]], [2]], [])
[[1], 2]
>>> sum([[1], [2, 3], [4]], [])
[1, 2, 3, 4]

Discussion Question

Implement leaves, which returns a list of the leaf values of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

14

def leaves(tree):
 """Return a list containing the leaves of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """
 if is_leaf(tree):
 return [root(tree)]
 else:
 return ___

>>> sum([[1]], [])
[1]
>>> sum([[[1]], [2]], [])
[[1], 2]
>>> sum([[1], [2, 3], [4]], [])
[1, 2, 3, 4]

Discussion Question

Implement leaves, which returns a list of the leaf values of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

14

 sum([leaves(b) for b in branches(tree)], []))

def leaves(tree):
 """Return a list containing the leaves of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """
 if is_leaf(tree):
 return [root(tree)]
 else:
 return ___

>>> sum([[1]], [])
[1]
>>> sum([[[1]], [2]], [])
[[1], 2]
>>> sum([[1], [2, 3], [4]], [])
[1, 2, 3, 4]

Example: Partition Trees

(Demo)

Interactive Diagram

