Lecture 15:
Inheritance

2/27/2015
Guest Lecturer: Marvin Zhang

Some (a lot of) material from these slides was borrowed from John DeNero.



Announcements

Homework 5 due Wednesday 3/4 @ 11:59pm
Project 3 due Thursday 3/12 @ 11:59pm
Midterm 2 on Thursday 3/19 7pm-9pm
Quiz 2 released Wednesday 3/4

e« Due Thursday 3/5 @ 11:59pm

- Object-oriented programming

- Similar to homework 5

Guerrilla section this Sunday 3/1 on mutation



Inheritance

Powerful idea in Object-Oriented Programming
Way of relating similar classes together

Common use: a specialized class inherits from a more
general class

class <new class> (<base class>) :

The new class shares attributes with the base class,
and overrides certalin attributes

Implementing the new class is now as simple as
specifying how it’s different from the base class



Inheritance Example

class Account:
"UWTA bank account."""

- Bank accounts have:

e an account holder

- a balance

e an interest rate of 2%
« YOU can:

- deposit to an account

« withdraw from an account

class CheckingAccount (Account) :

"""A checking account."""

« Checking accounts have:

an account holder

a balance

an interest rate of 1%

a withdraw fee of $%$1

« YOU can:

- deposit to a checking account

- withdraw from a checking account
(but there’s a fee!)



Inheritance Example

class Account:
"UWTA bank account."""

- Bank accounts have:

e an account holder

- a balance

e an interest rate of 2%
« YOU can:

- deposit to an account

« withdraw from an account

class CheckingAccount (Account) :
"""A checking account."""

« Checking accounts have:
« an account holder
- a balance
e an interest rate of 1%
- a withdraw fee of $1
« YOU can:
- deposit to a checking account

- withdraw from a checking account
(but there’s a fee!)



Inheritance Example

class Account:
"UWTA bank account."""

- Bank accounts have:

e an account holder

- a balance

e an interest rate of 2%
« YOU can:

- deposit to an account

« withdraw from an account

class CheckingAccount (Account) :
"""A checking account."""

« Checking accounts have:
« an account holder
- a balance
e an interest rate of 1%
e a withdraw fee of $1
« YOU can:
- deposit to a checking account

- withdraw from a checking account
(but there’s a fee!)



Inheritance Example

class Account:
"UWTA bank account."""

- Bank accounts have:

e an account holder

- a balance

e an interest rate of 2%
« YOU can:

- deposit to an account

« withdraw from an account

class CheckingAccount (Account) :
"""A checking account."""

« Checking accounts have:
« an account holder
- a balance
e an interest rate of 1%
e a withdraw fee of $1
« YOU can:

- deposit to a checking account

- withdraw from a checking account

(but there’s a feel)



Attribute Look Up

To look up a name in a class:

1. If the name 1s in the attributes of the class, return the
corresponding value

2. If not found, look up the name in the base class,
if there is one

Base class attributes are not copied into subclasses!

>>> tom = CheckingAccount ('Tom'")



Attribute Look Up

To look up a name in a class:

1. If the name 1s in the attributes of the class, return the
corresponding value

2. If not found, look up the name in the base class,
if there is one

Base class attributes are not copied into subclasses!

>>> tom = CheckingAccount ('Tom') # Account. 1init



Attribute Look Up

To look up a name in a class:

1. If the name 1s in the attributes of the class, return the
corresponding value

2. If not found, look up the name in the base class,
if there is one

Base class attributes are not copied into subclasses!

>>> tom = CheckingAccount ('Tom') # Account. init
>>> tom.lnterest



Attribute Look Up

To look up a name in a class:

1. If the name 1s in the attributes of the class, return the
corresponding value

2. If not found, look up the name in the base class,
if there is one

Base class attributes are not copied into subclasses!

>>> tom = CheckingAccount ('Tom') # Account. 1init

>>> tom.interest # Found in CheckingAccount
0.01



Attribute Look Up

To look up a name in a class:

1. If the name 1s in the attributes of the class, return the
corresponding value

2. If not found, look up the name in the base class,
if there is one

Base class attributes are not copied into subclasses!

>>> tom = CheckingAccount ('Tom') # Account. init
>>> tom.interest # Found in CheckingAccount
0.01

>>> tom.deposit (20)



Attribute Look Up

To look up a name in a class:

1. If the name 1s in the attributes of the class, return the
corresponding value

2. If not found, look up the name in the base class,
if there is one

Base class attributes are not copied into subclasses!

>>> tom = CheckingAccount ('Tom') # Account. init
>>> tom.interest # Found in CheckingAccount
0.01

>>> tom.deposit (20) # Found in Account
20



Attribute Look Up

To look up a name in a class:

1. If the name 1s in the attributes of the class, return the
corresponding value

2. If not found, look up the name in the base class,
if there is one

Base class attributes are not copied into subclasses!

>>> tom = CheckingAccount ('Tom') # Account. init
>>> tom.interest # Found in CheckingAccount

0.01

>>> tom.deposit (20) # Found in Account

20

>>> tom.wlithdraw (5)



Attribute Look Up

To look up a name in a class:

1. If the name 1s in the attributes of the class, return the
corresponding value

2. If not found, look up the name in the base class,
if there is one

Base class attributes are not copied into subclasses!

>>> tom = CheckingAccount ('Tom') # Account. init
>>> tom.interest # Found in CheckingAccount

0.01

>>> tom.deposit (20) # Found in Account

20

>>> tom.withdraw(5) # Found in CheckingAccount
14



Designing for Inheritance

\«/ﬂ Don’t repeat yourself! Use existing implementations

/. Reuse overridden attributes by accessing them
through the base class

\¢/3 Look up attributes on instances 1t possible

class CheckingAccount (Account) :
withdraw fee = 1
interest = 0.01
def withdraw(self, amount) :

lllllllllllllllllllllllllllllllllllllllllllllllll
*

.
-----------------------------------------------------------------------------------

.
---------------------------------------------------



Inheritance vs Composition

« Inheritance: relating two classes through
specifying similarities and differences

« Represents “is a” relationships, e.g. a
checking account 1s a specific type of
account

« Composition: connecting two classes
through their relationship to one another

« Represents “has a” relationships, e.g. a
bank has a collection of bank accounts



Multiple Inheritance

« In Python, a class can inherit from multiple base
classes

« This exists in many but not all object-oriented
languages

« This is a tricky and often dangerous subject, so
proceed carefully!

class SavingsAccount (Account) :
deposit fee = 2
def deposit(self, amount):
return Account.deposit (
self, amount - self.deposit fee)



Multiple Inheritance Example

- Bank executive wants the following:

Low interest rate of 1%

$1 withdrawal fee

$2 deposit fee

A free dollar for opening the account!

class BestAccount (CheckingAccount, SavingsAccount) :
def  1nit (self, account holder):
self.holder = account holder
self.balance = 1 # best deal ever



Multiple Inheritance Example

Account

/\

CheckingAccount

SavingsAccount

\/

BestAccount

>>> such a deal = BestAccount ('"Marvin')




Multiple Inheritance Example

Account

/\

CheckingAccount SavingsAccount

\/

BestAccount

>>> such a deal = BestAccount ('Marvin')
>>> such a deal.balance # instance attribute
1



Multiple Inheritance Example

Account

/\

CheckingAccount SavingsAccount

\/

BestAccount

>>> such a deal = BestAccount ('Marvin')
>>> such a deal.balance # instance attribute
1

>>> such a deal.deposit (20) # SavingsAccount
19



Multiple Inheritance Example

Account

/\

CheckingAccount SavingsAccount

>>>
>>>

>>>

19
>>>

13

\/

BestAccount

such a deal = BestAccount ('Marvin')
such a deal.balance # instance attribute

such a deal.deposit (20) # SavingsAccount

such a deal.withdraw(5) # CheckingAccount



Complicated Inheritance

To show how complicated inheritance can be, let’s
look at an analogy through biological inheritance.

some guy Gramma  Gramps Grandpop Grandmom
some other guy Double Half Aunt Mom Dad Double Half Uncle

NN

Quabouple Half Cousin

Moral of the story: inheritance (especially multiple inheritance)
is complicated and weird. Use it carefully!



