
61A Lecture 17

Wednesday, March 4



Announcements

• Delayed: Hog contest winners will be announced Friday 3/6 in lecture 

• Quiz 2 due Thursday 3/5 @ 11:59pm (challenging!) 

• Project 3 due Thursday 3/12 @ 11:59pm (get started now!) 

• Delayed: Homework 6 due Monday 3/16 @ 11:59pm 

• Midterm 2 is on Thursday 3/19 7pm-9pm 

§Emphasis: mutable data, object-oriented programming, recursion, and recursive data

2



Generic Functions of Multiple Arguments



More Generic Functions

A function might want to operate on multiple data types 

Last lecture:  

• Polymorphic functions using shared messages 

• Interfaces: collections of messages that have specific behavior conditions 

• Two interchangeable implementations of complex numbers 

This lecture: 

• An arithmetic system over related types 

• Operator overloading 

• Type dispatching 

• Type coercion 

What's different? Today's generic functions apply to multiple arguments that 
                  don't share a common interface.

4



Rational Numbers

class Rational: 
    """A rational number represented as a numerator and denominator.""" 
    def __init__(self, numer, denom): 
        g = gcd(numer, denom) 
        self.numer = numer // g 
        self.denom = denom // g 
!
    def __repr__(self): 
        return 'Rational({0}, {1})'.format(self.numer, self.denom)

Greatest common 
divisor

5

    def add(self, other): 
        nx, dx = self.numer, self.denom 
        ny, dy = other.numer, other.denom 
        return Rational(nx * dy + ny * dx, dx * dy) 
!
    def mul(self, other): 
        numer = self.numer * other.numer 
        denom = self.denom * other.denom 
        return Rational(numer, denom)

(Demo)

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

nx*dy + ny*dx

dx*dy
=



Complex Numbers

class ComplexRI(Complex): 
    """A rectangular representation.""" 
    def __init__(self, real, imag): 
        self.real = real 
        self.imag = imag 
!
    @property 
    def magnitude(self): 
        return (self.real ** 2 + self.imag ** 2) ** 0.5 
!
    @property 
    def angle(self): 
        return atan2(self.imag, self.real)

6

(Demo)

class ComplexMA(Complex): 
    """A polar representation.""" 
    def __init__(self, magnitude, angle): 
        self.magnitude = magnitude 
        self.angle = angle 
!
    @property 
    def real(self): 
        return self.magnitude * cos(self.angle) 
!
    @property 
    def imag(self): 
        return self.magnitude * sin(self.angle)

class Complex: 
    def add(self, other): 
        return ComplexRI(self.real + other.real, 
                         self.imag + other.imag) 
    def mul(self, other): 
        return ComplexMA(self.magnitude * other.magnitude,  
                         self.angle + other.angle)



Cross-Type Arithmetic Examples

Currently, we can add rationals to rationals, but not rationals to complex numbers

7

>>> Rational(3, 14).add(Rational(2, 7)) 

Rational(1, 2) 

>>> ComplexRI(0, 1).mul(ComplexMA(1, 0.5 * pi)) 

ComplexMA(1, 1 * pi) 

>>> Rational(3, 14) + Rational(2, 7) 

Rational(1, 2) 

>>> ComplexRI(0, 1) * ComplexMA(1, 0.5 * pi) 

ComplexMA(1, 1 * pi) 

>>> Rational(1, 2) + ComplexRI(0.5, 2) 

ComplexRI(1, 2) 

>>> ComplexMA(2, 0.5 * pi) * Rational(3, 2) 

ComplexMA(3, 0.5 * pi)

Shared 
interface

Operators

Cross-type 
arithmetic

3

14
+

2

7

i · i

3

14
+

2

7

i · i

1

2
+ (0.5 + 2 · i)

2 · i · 3
2



Special Method Names



Special Method Names in Python

9

Certain names are special because they have built-in behavior 

These names always start and end with two underscores

__init__ 

__repr__ 

__add__ 

__bool__

Method invoked automatically when an object is constructed 

Method invoked to display an object as a string 

Method invoked to add one object to another 

Method invoked to convert an object to True or False

>>> zero, one, two = 0, 1, 2 
>>> one + two 
3 
>>> bool(zero), bool(one) 
(False, True)

>>> zero, one, two = 0, 1, 2 
>>> one.__add__(two) 
3 
>>> zero.__bool__(), one.__bool__() 
(False, True)

Same 
behavior 
using 

methods



Special Methods

Adding instances of user-defined classes invokes the __add__ method

class Number: 
    """A number.""" 
    def __add__(self, other): 
        return self.add(other) 
!
    def __mul__(self, other): 
        return self.mul(other)

>>> Rational(1, 3) + Rational(1, 6) 
Rational(1, 2)

10

We can also __add__ complex numbers, even with multiple representations  (Demo)

http://docs.python.org/py3k/reference/datamodel.html#special-method-names

http://getpython3.com/diveintopython3/special-method-names.html

class Complex(Number): 
    def add(self, other): 
        ... 
    def mul(self, other): 
        ...

class Rational(Number): 
    def add(self, other): 
        ... 
    def mul(self, other): 
        ...



Type Dispatching



The Independence of Data Types

Data abstraction and class definitions keep types separate 

Some operations need access to the implementation of two different abstractions

Rational numbers as 
numerators & denominators

Complex numbers as 
two-dimensional vectors

How do we add a complex number and 
a rational number together?

12

&

def add_complex_and_rational(c, r): 
    """Return c + r for complex c and rational r.""" 
    return ComplexRI(c.real + r.numer/r.denom, c.imag)



Type Dispatching

Define a different function for each possible combination of types for which an 
operation (e.g., addition) is valid

Rational.type_tag = "rat" 
Complex.type_tag = "com" 
!
class Number: 
    def __add__(self, other): 
        if self.type_tag == other.type_tag: 
            return self.add(other) 
        elif (self.type_tag, other.type_tag) in self.adders: 
            return self.cross_apply(other, self.adders) 
!
    def cross_apply(self, other, cross_fns): 
        cross_fn = cross_fns[(self.type_tag, other.type_tag)] 
        return cross_fn(self, other)

13

Same tag:  
same interface

Defer to 
add method

All forms of 
cross-type 

addition for self

    adders = {("com", "rat"): add_complex_and_rational, 
              ("rat", "com"): add_rational_and_complex}

(Demo)



Type Dispatching Analysis



m · (m � 1) · n

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary 

Extensible: Any new numeric type can "install" itself into the existing system by adding 
new entries to the cross-type function dictionaries

Question: How many cross-type implementations are required for m types and n operations?

Number.adders[(tag0, tag1)] = add_tag0_and_tag1

15

m2 · n2m2 · nm · nnm



Type Dispatching Analysis

Arg 1 Arg 2 Add Multiply

Complex Complex

Rational Rational

Complex Rational

Rational Complex

16

Minimal violation of abstraction barriers: we define cross-type functions as necessary. 

Extensible: Any new numeric type can "install" itself into the existing system by adding 
new entries to the cross-type function dictionaries



Type Coercion



Coercion

Idea: Some types can be converted into other types 

Takes advantage of structure in the type system

def rational_to_complex(r): 
    """Return complex equal to rational.""" 
    return ComplexRI(r.numer/r.denom, 0)

Question: Can any numeric type be coerced into any other?

18

Question: Can any two numeric types be coerced into a common type?

Question: Is coercion exact?



Applying Operators with Coercion

(Demo)

19

class Number: 
    def __add__(self, other): 
        x, y = self.coerce(other) 
        return x.add(y) 
!
    def coerce(self, other): 
        if self.type_tag == other.type_tag: 
            return self, other 
        elif (self.type_tag, other.type_tag) in self.coercions: 
            return (self.coerce_to(other.type_tag), other) 
        elif (other.type_tag, self.type_tag) in self.coercions: 
            return (self, other.coerce_to(self.type_tag))

    coercions = {('rat', 'com'): rational_to_complex}

Always defer to 
add method

Same interface:  
no change required

    def coerce_to(self, other_tag): 
        coercion_fn = self.coercions[(self.type_tag, other_tag)] 
        return coercion_fn(self)



Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type coercion as necessary 

Requires that all types can be coerced into a common type 

More sharing: All operators use the same coercion scheme

Arg 1 Arg 2 Add Multiply
Complex Complex
Rational Rational
Complex Rational
Rational Complex

From To Coerce
Complex Rational

Rational Complex

Type Add Multiply
Complex

Rational

20


