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Announcements

• Project 4 due Friday 11/21 @ 11:59pm

!Early submission point #3: Submit by Thursday 11/20 @ 11:59pm

• Homework 9 (6 pts) due Wednesday 11/26 @ 11:59pm

• Guest in live lecture, TA Soumya Basu, on Monday 11/24 (videos still by John)

• No lecture on Wednesday 11/26 (turkey)

2
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Expressions can contain function calls and arithmetic operators

4

select [columns] from [table] where [expression] order by [expression];

[expression] as [name], [expression] as [name], ...

Combine values: +, -, *, /, %, and, or

Transform values: abs, round, not, -

Compare values: <, <=, >, >=, <>, !=, =

(Demo)
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String Expressions

String values can be combined to form longer strings

6

sqlite> create table phrase as select "hello, world" as s;
sqlite> select substr(s, 4, 2) || substr(s, instr(s, " ")+1, 1) from phrase;
low

Strings can be used to represent structured values, but doing so is rarely a good idea

Basic string manipulation is built into SQL, but differs from Python

sqlite> select "hello," || " world"; 
hello, world

sqlite> create table lists as select "one" as car, "two,three,four" as cdr;
sqlite> select substr(cdr, 1, instr(cdr, ",")-1) as cadr from lists;
two

(Demo)
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>>> from collections import namedtuple
>>> City = namedtuple("City", ["latitude", "longitude", "name"])
>>> cities = [City(38, 122, "Berkeley"),
              City(42,  71, "Cambridge"),
              City(43,  93, "Minneapolis")]
>>> [city.latitude for city in cities]
[38, 42, 43]

Attribute names are 
accessible as the _fields 
attribute of an instance 
of City

>>> print(cities[0])
City(latitude=38, longitude=122, name='Berkeley')
>>> print(cities[0]._fields)
('latitude', 'longitude', 'name')

The eval function can take 
a dictionary of name-value 
bindings as a second 
argument

>>> eval("latitude + 3")
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<string>", line 1, in <module>
NameError: name 'latitude' is not defined
>>> eval("latitude + 3", {"latitude": 38})
41
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A Select Class

The SQL parser creates an instance of the Select class for each select statement

11

>>> class Select:
        """select [columns] from [tables] where [condition]."""
        def __init__(self, columns, tables, condition):
            self.columns = columns
            self.tables = tables
            self.condition = condition
            self.make_row = create_make_row(self.columns)
        def execute(self, env):
            """Join, filter, and map rows from tables to columns."""
            from_rows = join(self.tables, env)
            filtered_rows = filter(self.filter_fn, from_rows)
            return map(self.make_row, filtered_rows)
        def filter_fn(self, row):
            if self.condition:
                return eval(self.condition, row)
            else:
                return True

Simplified version of http://composingprograms.com/examples/sql/sql_exec.py
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>>> def create_make_row(description):
        """Return a function from an input environment (dict) to an output row.

        description -- a comma-separated list of [expression] as [column name]
        """
        columns = description.split(", ")
        expressions, names = [], []
        for column in columns:
            if " as " in column:
                expression, name = column.split(" as ")
            else:
                expression, name = column, column
            expressions.append(expression)
            names.append(name)
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>>> def create_make_row(description):
        """Return a function from an input environment (dict) to an output row.

        description -- a comma-separated list of [expression] as [column name]
        """
        columns = description.split(", ")
        expressions, names = [], []
        for column in columns:
            if " as " in column:
                expression, name = column.split(" as ")
            else:
                expression, name = column, column
            expressions.append(expression)
            names.append(name)
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Creating Row Classes Dynamically

Each select statement creates a table with new columns, represented by a new class

12

>>> def create_make_row(description):
        """Return a function from an input environment (dict) to an output row.

        description -- a comma-separated list of [expression] as [column name]
        """
        columns = description.split(", ")
        expressions, names = [], []
        for column in columns:
            if " as " in column:
                expression, name = column.split(" as ")
            else:
                expression, name = column, column
            expressions.append(expression)
            names.append(name)
        row = namedtuple("Row", names)
        return lambda env: row(*[eval(e, env) for e in expressions])
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>>> from itertools import product
>>> def join(tables, env):
        """Return an iterator over dictionaries from names to values in a row."""
        names = tables.split(", ")
        joined_rows = product(*[env[name] for name in names])
        return map(lambda rows: make_env(rows, names), joined_rows)
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>>> from itertools import product
>>> def join(tables, env):
        """Return an iterator over dictionaries from names to values in a row."""
        names = tables.split(", ")
        joined_rows = product(*[env[name] for name in names])
        return map(lambda rows: make_env(rows, names), joined_rows)
>>> def make_env(rows, names):
        """Create an environment of names bound to values."""
        env = dict(zip(names, rows))
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>>> from itertools import product
>>> def join(tables, env):
        """Return an iterator over dictionaries from names to values in a row."""
        names = tables.split(", ")
        joined_rows = product(*[env[name] for name in names])
        return map(lambda rows: make_env(rows, names), joined_rows)
>>> def make_env(rows, names):
        """Create an environment of names bound to values."""
        env = dict(zip(names, rows))
        for row in rows:
            for name in row._fields:
                env[name] = getattr(row, name)



Joining Rows

Joining creates a dictionary with all names and aliases for each combination of rows
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(Demo)

>>> from itertools import product
>>> def join(tables, env):
        """Return an iterator over dictionaries from names to values in a row."""
        names = tables.split(", ")
        joined_rows = product(*[env[name] for name in names])
        return map(lambda rows: make_env(rows, names), joined_rows)
>>> def make_env(rows, names):
        """Create an environment of names bound to values."""
        env = dict(zip(names, rows))
        for row in rows:
            for name in row._fields:
                env[name] = getattr(row, name)
        return env
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create table cities as
  select 38 as lat, 122 as lon, "Berkeley" as name union
  select 42,         71,        "Cambridge"        union
  select 45,         93,        "Minneapolis";
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create table cities as
  select 38 as lat, 122 as lon, "Berkeley" as name union
  select 42,         71,        "Cambridge"        union
  select 45,         93,        "Minneapolis";

>>> City = namedtuple("City", ["lat", "lon", "name"])
>>> cities = [City(38, 122, "Berkeley"), City(42,  71, "Cambridge"), City(43,  93, "Minneapolis")]
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create table cities as
  select 38 as lat, 122 as lon, "Berkeley" as name union
  select 42,         71,        "Cambridge"        union
  select 45,         93,        "Minneapolis";
select 60*(lat-38) as north from cities where name != "Berkeley";

>>> City = namedtuple("City", ["lat", "lon", "name"])
>>> cities = [City(38, 122, "Berkeley"), City(42,  71, "Cambridge"), City(43,  93, "Minneapolis")]
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create table cities as
  select 38 as lat, 122 as lon, "Berkeley" as name union
  select 42,         71,        "Cambridge"        union
  select 45,         93,        "Minneapolis";
select 60*(lat-38) as north from cities where name != "Berkeley";

>>> City = namedtuple("City", ["lat", "lon", "name"])
>>> cities = [City(38, 122, "Berkeley"), City(42,  71, "Cambridge"), City(43,  93, "Minneapolis")]

>>> s = Select(________________________, ________________, _____________________________________)

>>> for row in s.execute(_______________________________________________________________________):
...     print(row)
... 
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Fill in the blanks in this interactive Python session that interprets these SQL statements
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create table cities as
  select 38 as lat, 122 as lon, "Berkeley" as name union
  select 42,         71,        "Cambridge"        union
  select 45,         93,        "Minneapolis";
select 60*(lat-38) as north from cities where name != "Berkeley";

>>> City = namedtuple("City", ["lat", "lon", "name"])
>>> cities = [City(38, 122, "Berkeley"), City(42,  71, "Cambridge"), City(43,  93, "Minneapolis")]

>>> s = Select(________________________, ________________, _____________________________________)

>>> for row in s.execute(_______________________________________________________________________):
...     print(row)
... 
Row(north=240)
Row(north=300)



Interpreting SQL Using Python

Fill in the blanks in this interactive Python session that interprets these SQL statements
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create table cities as
  select 38 as lat, 122 as lon, "Berkeley" as name union
  select 42,         71,        "Cambridge"        union
  select 45,         93,        "Minneapolis";
select 60*(lat-38) as north from cities where name != "Berkeley";

>>> City = namedtuple("City", ["lat", "lon", "name"])
>>> cities = [City(38, 122, "Berkeley"), City(42,  71, "Cambridge"), City(43,  93, "Minneapolis")]

>>> s = Select(________________________, ________________, _____________________________________)

>>> for row in s.execute(_______________________________________________________________________):
...     print(row)
... 
Row(north=240)
Row(north=300)

>>> class Select: 
        """select [columns] from [tables] where [condition].""" 
        def __init__(self, columns, tables, condition): 
            ... 
        def execute(self, env): 
            ...



Interpreting SQL Using Python

Fill in the blanks in this interactive Python session that interprets these SQL statements
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create table cities as
  select 38 as lat, 122 as lon, "Berkeley" as name union
  select 42,         71,        "Cambridge"        union
  select 45,         93,        "Minneapolis";
select 60*(lat-38) as north from cities where name != "Berkeley";

>>> City = namedtuple("City", ["lat", "lon", "name"])
>>> cities = [City(38, 122, "Berkeley"), City(42,  71, "Cambridge"), City(43,  93, "Minneapolis")]

>>> s = Select(________________________, ________________, _____________________________________)

>>> for row in s.execute(_______________________________________________________________________):
...     print(row)
... 
Row(north=240)
Row(north=300)

>>> class Select: 
        """select [columns] from [tables] where [condition].""" 
        def __init__(self, columns, tables, condition): 
            ... 
        def execute(self, env): 
            ...

'60*(lat-38) as north'



Interpreting SQL Using Python

Fill in the blanks in this interactive Python session that interprets these SQL statements

15

create table cities as
  select 38 as lat, 122 as lon, "Berkeley" as name union
  select 42,         71,        "Cambridge"        union
  select 45,         93,        "Minneapolis";
select 60*(lat-38) as north from cities where name != "Berkeley";

>>> City = namedtuple("City", ["lat", "lon", "name"])
>>> cities = [City(38, 122, "Berkeley"), City(42,  71, "Cambridge"), City(43,  93, "Minneapolis")]

>>> s = Select(________________________, ________________, _____________________________________)

>>> for row in s.execute(_______________________________________________________________________):
...     print(row)
... 
Row(north=240)
Row(north=300)

>>> class Select: 
        """select [columns] from [tables] where [condition].""" 
        def __init__(self, columns, tables, condition): 
            ... 
        def execute(self, env): 
            ...

'60*(lat-38) as north' 'cities'



Interpreting SQL Using Python

Fill in the blanks in this interactive Python session that interprets these SQL statements

15

create table cities as
  select 38 as lat, 122 as lon, "Berkeley" as name union
  select 42,         71,        "Cambridge"        union
  select 45,         93,        "Minneapolis";
select 60*(lat-38) as north from cities where name != "Berkeley";

>>> City = namedtuple("City", ["lat", "lon", "name"])
>>> cities = [City(38, 122, "Berkeley"), City(42,  71, "Cambridge"), City(43,  93, "Minneapolis")]

>>> s = Select(________________________, ________________, _____________________________________)

>>> for row in s.execute(_______________________________________________________________________):
...     print(row)
... 
Row(north=240)
Row(north=300)

>>> class Select: 
        """select [columns] from [tables] where [condition].""" 
        def __init__(self, columns, tables, condition): 
            ... 
        def execute(self, env): 
            ...

'60*(lat-38) as north' 'cities' 'name != "Berkeley"'



Interpreting SQL Using Python

Fill in the blanks in this interactive Python session that interprets these SQL statements

15

create table cities as
  select 38 as lat, 122 as lon, "Berkeley" as name union
  select 42,         71,        "Cambridge"        union
  select 45,         93,        "Minneapolis";
select 60*(lat-38) as north from cities where name != "Berkeley";

>>> City = namedtuple("City", ["lat", "lon", "name"])
>>> cities = [City(38, 122, "Berkeley"), City(42,  71, "Cambridge"), City(43,  93, "Minneapolis")]

>>> s = Select(________________________, ________________, _____________________________________)

>>> for row in s.execute(_______________________________________________________________________):
...     print(row)
... 
Row(north=240)
Row(north=300)

>>> class Select: 
        """select [columns] from [tables] where [condition].""" 
        def __init__(self, columns, tables, condition): 
            ... 
        def execute(self, env): 
            ...

{"cities": cities}

'60*(lat-38) as north' 'cities' 'name != "Berkeley"'



Interpreting SQL Using Python

Fill in the blanks in this interactive Python session that interprets these SQL statements

15

create table cities as
  select 38 as lat, 122 as lon, "Berkeley" as name union
  select 42,         71,        "Cambridge"        union
  select 45,         93,        "Minneapolis";
select 60*(lat-38) as north from cities where name != "Berkeley";

>>> City = namedtuple("City", ["lat", "lon", "name"])
>>> cities = [City(38, 122, "Berkeley"), City(42,  71, "Cambridge"), City(43,  93, "Minneapolis")]

>>> s = Select(________________________, ________________, _____________________________________)

>>> for row in s.execute(_______________________________________________________________________):
...     print(row)
... 
Row(north=240)
Row(north=300)

>>> class Select: 
        """select [columns] from [tables] where [condition].""" 
        def __init__(self, columns, tables, condition): 
            ... 
        def execute(self, env): 
            ...

{"cities": cities}

'60*(lat-38) as north' 'cities' 'name != "Berkeley"'

How many times is eval 
called during this call 
to s.execute? (Demo)
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Architecture of a Database System by Hellerstein, Stonebreaker, and Hamilton
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Select the parents of curly-furred dogs:

select parent from parents, dogs  

              where child = name and fur = "curly";

Join all rows of parents to all rows of dogs, filter by child = name and fur = "curly"

Join only rows of parents and dogs where child = name, filter by fur = "curly"

Filter dogs by fur = "curly", join result with all rows of parents, filter by child = name

Filter dogs by fur = "curly", join only rows of result and parents where child = name


