
61A Lecture 33

Wednesday, November 19

Announcements

2

Announcements

• Project 4 due Friday 11/21 @ 11:59pm

2

Announcements

• Project 4 due Friday 11/21 @ 11:59pm

!Early submission point #3: Submit by Thursday 11/20 @ 11:59pm

2

Announcements

• Project 4 due Friday 11/21 @ 11:59pm

!Early submission point #3: Submit by Thursday 11/20 @ 11:59pm

• Homework 9 (6 pts) due Wednesday 11/26 @ 11:59pm

2

Announcements

• Project 4 due Friday 11/21 @ 11:59pm

!Early submission point #3: Submit by Thursday 11/20 @ 11:59pm

• Homework 9 (6 pts) due Wednesday 11/26 @ 11:59pm

• Guest in live lecture, TA Soumya Basu, on Monday 11/24 (videos still by John)

2

Announcements

• Project 4 due Friday 11/21 @ 11:59pm

!Early submission point #3: Submit by Thursday 11/20 @ 11:59pm

• Homework 9 (6 pts) due Wednesday 11/26 @ 11:59pm

• Guest in live lecture, TA Soumya Basu, on Monday 11/24 (videos still by John)

• No lecture on Wednesday 11/26 (turkey)

2

Numerical Expressions

Numerical Expressions

Expressions can contain function calls and arithmetic operators

4

Numerical Expressions

Expressions can contain function calls and arithmetic operators

4

select [columns] from [table] where [expression] order by [expression];

Numerical Expressions

Expressions can contain function calls and arithmetic operators

4

select [columns] from [table] where [expression] order by [expression];

[expression] as [name], [expression] as [name], ...

Numerical Expressions

Expressions can contain function calls and arithmetic operators

4

select [columns] from [table] where [expression] order by [expression];

[expression] as [name], [expression] as [name], ...

Combine values: +, -, *, /, %, and, or

Numerical Expressions

Expressions can contain function calls and arithmetic operators

4

select [columns] from [table] where [expression] order by [expression];

[expression] as [name], [expression] as [name], ...

Combine values: +, -, *, /, %, and, or

Transform values: abs, round, not, -

Numerical Expressions

Expressions can contain function calls and arithmetic operators

4

select [columns] from [table] where [expression] order by [expression];

[expression] as [name], [expression] as [name], ...

Combine values: +, -, *, /, %, and, or

Transform values: abs, round, not, -

Compare values: <, <=, >, >=, <>, !=, =

Numerical Expressions

Expressions can contain function calls and arithmetic operators

4

select [columns] from [table] where [expression] order by [expression];

[expression] as [name], [expression] as [name], ...

Combine values: +, -, *, /, %, and, or

Transform values: abs, round, not, -

Compare values: <, <=, >, >=, <>, !=, =

(Demo)

String Expressions

String Expressions

String values can be combined to form longer strings

6

String Expressions

String values can be combined to form longer strings

6

sqlite> select "hello," || " world"; 
hello, world

String Expressions

String values can be combined to form longer strings

6

Basic string manipulation is built into SQL, but differs from Python

sqlite> select "hello," || " world"; 
hello, world

String Expressions

String values can be combined to form longer strings

6

sqlite> create table phrase as select "hello, world" as s;

Basic string manipulation is built into SQL, but differs from Python

sqlite> select "hello," || " world"; 
hello, world

String Expressions

String values can be combined to form longer strings

6

sqlite> create table phrase as select "hello, world" as s;
sqlite> select substr(s, 4, 2) || substr(s, instr(s, " ")+1, 1) from phrase;

Basic string manipulation is built into SQL, but differs from Python

sqlite> select "hello," || " world"; 
hello, world

String Expressions

String values can be combined to form longer strings

6

sqlite> create table phrase as select "hello, world" as s;
sqlite> select substr(s, 4, 2) || substr(s, instr(s, " ")+1, 1) from phrase;
low

Basic string manipulation is built into SQL, but differs from Python

sqlite> select "hello," || " world"; 
hello, world

String Expressions

String values can be combined to form longer strings

6

sqlite> create table phrase as select "hello, world" as s;
sqlite> select substr(s, 4, 2) || substr(s, instr(s, " ")+1, 1) from phrase;
low

Basic string manipulation is built into SQL, but differs from Python

sqlite> select "hello," || " world"; 
hello, world

String Expressions

String values can be combined to form longer strings

6

sqlite> create table phrase as select "hello, world" as s;
sqlite> select substr(s, 4, 2) || substr(s, instr(s, " ")+1, 1) from phrase;
low

Strings can be used to represent structured values, but doing so is rarely a good idea

Basic string manipulation is built into SQL, but differs from Python

sqlite> select "hello," || " world"; 
hello, world

String Expressions

String values can be combined to form longer strings

6

sqlite> create table phrase as select "hello, world" as s;
sqlite> select substr(s, 4, 2) || substr(s, instr(s, " ")+1, 1) from phrase;
low

Strings can be used to represent structured values, but doing so is rarely a good idea

Basic string manipulation is built into SQL, but differs from Python

sqlite> select "hello," || " world"; 
hello, world

sqlite> create table lists as select "one" as car, "two,three,four" as cdr;

String Expressions

String values can be combined to form longer strings

6

sqlite> create table phrase as select "hello, world" as s;
sqlite> select substr(s, 4, 2) || substr(s, instr(s, " ")+1, 1) from phrase;
low

Strings can be used to represent structured values, but doing so is rarely a good idea

Basic string manipulation is built into SQL, but differs from Python

sqlite> select "hello," || " world"; 
hello, world

sqlite> create table lists as select "one" as car, "two,three,four" as cdr;
sqlite> select substr(cdr, 1, instr(cdr, ",")-1) as cadr from lists;

String Expressions

String values can be combined to form longer strings

6

sqlite> create table phrase as select "hello, world" as s;
sqlite> select substr(s, 4, 2) || substr(s, instr(s, " ")+1, 1) from phrase;
low

Strings can be used to represent structured values, but doing so is rarely a good idea

Basic string manipulation is built into SQL, but differs from Python

sqlite> select "hello," || " world"; 
hello, world

sqlite> create table lists as select "one" as car, "two,three,four" as cdr;
sqlite> select substr(cdr, 1, instr(cdr, ",")-1) as cadr from lists;
two

String Expressions

String values can be combined to form longer strings

6

sqlite> create table phrase as select "hello, world" as s;
sqlite> select substr(s, 4, 2) || substr(s, instr(s, " ")+1, 1) from phrase;
low

Strings can be used to represent structured values, but doing so is rarely a good idea

Basic string manipulation is built into SQL, but differs from Python

sqlite> select "hello," || " world"; 
hello, world

sqlite> create table lists as select "one" as car, "two,three,four" as cdr;
sqlite> select substr(cdr, 1, instr(cdr, ",")-1) as cadr from lists;
two

String Expressions

String values can be combined to form longer strings

6

sqlite> create table phrase as select "hello, world" as s;
sqlite> select substr(s, 4, 2) || substr(s, instr(s, " ")+1, 1) from phrase;
low

Strings can be used to represent structured values, but doing so is rarely a good idea

Basic string manipulation is built into SQL, but differs from Python

sqlite> select "hello," || " world"; 
hello, world

sqlite> create table lists as select "one" as car, "two,three,four" as cdr;
sqlite> select substr(cdr, 1, instr(cdr, ",")-1) as cadr from lists;
two

(Demo)

SQL Execution

Useful Python Features

8

Useful Python Features

The namedtuple function
returns a new sub-class
of tuple

8

Useful Python Features

The namedtuple function
returns a new sub-class
of tuple

8

>>> from collections import namedtuple
>>> City = namedtuple("City", ["latitude", "longitude", "name"])

Useful Python Features

The namedtuple function
returns a new sub-class
of tuple

8

>>> from collections import namedtuple
>>> City = namedtuple("City", ["latitude", "longitude", "name"])
>>> cities = [City(38, 122, "Berkeley"),
 City(42, 71, "Cambridge"),
 City(43, 93, "Minneapolis")]

Useful Python Features

The namedtuple function
returns a new sub-class
of tuple

8

>>> from collections import namedtuple
>>> City = namedtuple("City", ["latitude", "longitude", "name"])
>>> cities = [City(38, 122, "Berkeley"),
 City(42, 71, "Cambridge"),
 City(43, 93, "Minneapolis")]
>>> [city.latitude for city in cities]
[38, 42, 43]

Useful Python Features

The namedtuple function
returns a new sub-class
of tuple

8

>>> from collections import namedtuple
>>> City = namedtuple("City", ["latitude", "longitude", "name"])
>>> cities = [City(38, 122, "Berkeley"),
 City(42, 71, "Cambridge"),
 City(43, 93, "Minneapolis")]
>>> [city.latitude for city in cities]
[38, 42, 43]

Attribute names are
accessible as the _fields
attribute of an instance
of City

Useful Python Features

The namedtuple function
returns a new sub-class
of tuple

8

>>> from collections import namedtuple
>>> City = namedtuple("City", ["latitude", "longitude", "name"])
>>> cities = [City(38, 122, "Berkeley"),
 City(42, 71, "Cambridge"),
 City(43, 93, "Minneapolis")]
>>> [city.latitude for city in cities]
[38, 42, 43]

Attribute names are
accessible as the _fields
attribute of an instance
of City

>>> print(cities[0])
City(latitude=38, longitude=122, name='Berkeley')

Useful Python Features

The namedtuple function
returns a new sub-class
of tuple

8

>>> from collections import namedtuple
>>> City = namedtuple("City", ["latitude", "longitude", "name"])
>>> cities = [City(38, 122, "Berkeley"),
 City(42, 71, "Cambridge"),
 City(43, 93, "Minneapolis")]
>>> [city.latitude for city in cities]
[38, 42, 43]

Attribute names are
accessible as the _fields
attribute of an instance
of City

>>> print(cities[0])
City(latitude=38, longitude=122, name='Berkeley')
>>> print(cities[0]._fields)
('latitude', 'longitude', 'name')

Useful Python Features

The namedtuple function
returns a new sub-class
of tuple

8

>>> from collections import namedtuple
>>> City = namedtuple("City", ["latitude", "longitude", "name"])
>>> cities = [City(38, 122, "Berkeley"),
 City(42, 71, "Cambridge"),
 City(43, 93, "Minneapolis")]
>>> [city.latitude for city in cities]
[38, 42, 43]

Attribute names are
accessible as the _fields
attribute of an instance
of City

>>> print(cities[0])
City(latitude=38, longitude=122, name='Berkeley')
>>> print(cities[0]._fields)
('latitude', 'longitude', 'name')

The eval function can take
a dictionary of name-value
bindings as a second
argument

Useful Python Features

The namedtuple function
returns a new sub-class
of tuple

8

>>> from collections import namedtuple
>>> City = namedtuple("City", ["latitude", "longitude", "name"])
>>> cities = [City(38, 122, "Berkeley"),
 City(42, 71, "Cambridge"),
 City(43, 93, "Minneapolis")]
>>> [city.latitude for city in cities]
[38, 42, 43]

Attribute names are
accessible as the _fields
attribute of an instance
of City

>>> print(cities[0])
City(latitude=38, longitude=122, name='Berkeley')
>>> print(cities[0]._fields)
('latitude', 'longitude', 'name')

The eval function can take
a dictionary of name-value
bindings as a second
argument

>>> eval("latitude + 3")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<string>", line 1, in <module>
NameError: name 'latitude' is not defined

Useful Python Features

The namedtuple function
returns a new sub-class
of tuple

8

>>> from collections import namedtuple
>>> City = namedtuple("City", ["latitude", "longitude", "name"])
>>> cities = [City(38, 122, "Berkeley"),
 City(42, 71, "Cambridge"),
 City(43, 93, "Minneapolis")]
>>> [city.latitude for city in cities]
[38, 42, 43]

Attribute names are
accessible as the _fields
attribute of an instance
of City

>>> print(cities[0])
City(latitude=38, longitude=122, name='Berkeley')
>>> print(cities[0]._fields)
('latitude', 'longitude', 'name')

The eval function can take
a dictionary of name-value
bindings as a second
argument

>>> eval("latitude + 3")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<string>", line 1, in <module>
NameError: name 'latitude' is not defined
>>> eval("latitude + 3", {"latitude": 38})
41

A Select Statement Filters, Sorts, and Maps Rows

9

A Select Statement Filters, Sorts, and Maps Rows

One correct (but not always efficient) implementation of select uses sequence operations

9

A Select Statement Filters, Sorts, and Maps Rows

One correct (but not always efficient) implementation of select uses sequence operations

9

sqlite> select name, 60*abs(latitude-38) as distance from cities where name != "Berkeley";
Miami|720
San Diego|300
Cambridge|240
Minneapolis|420
North Pole|3120

A Select Statement Filters, Sorts, and Maps Rows

One correct (but not always efficient) implementation of select uses sequence operations

9

>>> Distance = namedtuple("Row", ["name", "distance"])

sqlite> select name, 60*abs(latitude-38) as distance from cities where name != "Berkeley";
Miami|720
San Diego|300
Cambridge|240
Minneapolis|420
North Pole|3120

A Select Statement Filters, Sorts, and Maps Rows

One correct (but not always efficient) implementation of select uses sequence operations

9

>>> Distance = namedtuple("Row", ["name", "distance"])
>>> def columns(city):
 latitude, longitude, name = city
 return Distance(name, 60*abs(latitude-38))

sqlite> select name, 60*abs(latitude-38) as distance from cities where name != "Berkeley";
Miami|720
San Diego|300
Cambridge|240
Minneapolis|420
North Pole|3120

A Select Statement Filters, Sorts, and Maps Rows

One correct (but not always efficient) implementation of select uses sequence operations

9

>>> Distance = namedtuple("Row", ["name", "distance"])
>>> def columns(city):
 latitude, longitude, name = city
 return Distance(name, 60*abs(latitude-38))
>>> def condition(city):
 latitude, longitude, name = city
 return name != "Berkeley"

sqlite> select name, 60*abs(latitude-38) as distance from cities where name != "Berkeley";
Miami|720
San Diego|300
Cambridge|240
Minneapolis|420
North Pole|3120

A Select Statement Filters, Sorts, and Maps Rows

One correct (but not always efficient) implementation of select uses sequence operations

9

>>> Distance = namedtuple("Row", ["name", "distance"])
>>> def columns(city):
 latitude, longitude, name = city
 return Distance(name, 60*abs(latitude-38))
>>> def condition(city):
 latitude, longitude, name = city
 return name != "Berkeley"
>>> for row in map(columns, filter(condition, cities)):
 print(row)

sqlite> select name, 60*abs(latitude-38) as distance from cities where name != "Berkeley";
Miami|720
San Diego|300
Cambridge|240
Minneapolis|420
North Pole|3120

A Select Statement Filters, Sorts, and Maps Rows

One correct (but not always efficient) implementation of select uses sequence operations

9

>>> Distance = namedtuple("Row", ["name", "distance"])
>>> def columns(city):
 latitude, longitude, name = city
 return Distance(name, 60*abs(latitude-38))
>>> def condition(city):
 latitude, longitude, name = city
 return name != "Berkeley"
>>> for row in map(columns, filter(condition, cities)):
 print(row)
Row(name='Miami', distance=720)
...

sqlite> select name, 60*abs(latitude-38) as distance from cities where name != "Berkeley";
Miami|720
San Diego|300
Cambridge|240
Minneapolis|420
North Pole|3120

A Select Statement Filters, Sorts, and Maps Rows

One correct (but not always efficient) implementation of select uses sequence operations

9

>>> Distance = namedtuple("Row", ["name", "distance"])
>>> def columns(city):
 latitude, longitude, name = city
 return Distance(name, 60*abs(latitude-38))
>>> def condition(city):
 latitude, longitude, name = city
 return name != "Berkeley"
>>> for row in map(columns, filter(condition, cities)):
 print(row)
Row(name='Miami', distance=720)
...

sqlite> select name, 60*abs(latitude-38) as distance from cities where name != "Berkeley";
Miami|720
San Diego|300
Cambridge|240
Minneapolis|420
North Pole|3120

Names from column
description

A Select Statement Filters, Sorts, and Maps Rows

One correct (but not always efficient) implementation of select uses sequence operations

9

>>> Distance = namedtuple("Row", ["name", "distance"])
>>> def columns(city):
 latitude, longitude, name = city
 return Distance(name, 60*abs(latitude-38))
>>> def condition(city):
 latitude, longitude, name = city
 return name != "Berkeley"
>>> for row in map(columns, filter(condition, cities)):
 print(row)
Row(name='Miami', distance=720)
...

sqlite> select name, 60*abs(latitude-38) as distance from cities where name != "Berkeley";
Miami|720
San Diego|300
Cambridge|240
Minneapolis|420
North Pole|3120

Names from column
description

Expressions from
column description

A Select Statement Filters, Sorts, and Maps Rows

One correct (but not always efficient) implementation of select uses sequence operations

9

>>> Distance = namedtuple("Row", ["name", "distance"])
>>> def columns(city):
 latitude, longitude, name = city
 return Distance(name, 60*abs(latitude-38))
>>> def condition(city):
 latitude, longitude, name = city
 return name != "Berkeley"
>>> for row in map(columns, filter(condition, cities)):
 print(row)
Row(name='Miami', distance=720)
...

sqlite> select name, 60*abs(latitude-38) as distance from cities where name != "Berkeley";
Miami|720
San Diego|300
Cambridge|240
Minneapolis|420
North Pole|3120

Names from column
description

Expressions from
column description

Interpreting Select Statements

A Select Class

The SQL parser creates an instance of the Select class for each select statement

11Simplified version of http://composingprograms.com/examples/sql/sql_exec.py

A Select Class

The SQL parser creates an instance of the Select class for each select statement

11

>>> class Select:
 """select [columns] from [tables] where [condition]."""

Simplified version of http://composingprograms.com/examples/sql/sql_exec.py

A Select Class

The SQL parser creates an instance of the Select class for each select statement

11

>>> class Select:
 """select [columns] from [tables] where [condition]."""
 def __init__(self, columns, tables, condition):
 self.columns = columns
 self.tables = tables
 self.condition = condition
 self.make_row = create_make_row(self.columns)

Simplified version of http://composingprograms.com/examples/sql/sql_exec.py

A Select Class

The SQL parser creates an instance of the Select class for each select statement

11

>>> class Select:
 """select [columns] from [tables] where [condition]."""
 def __init__(self, columns, tables, condition):
 self.columns = columns
 self.tables = tables
 self.condition = condition
 self.make_row = create_make_row(self.columns)
 def execute(self, env):
 """Join, filter, and map rows from tables to columns."""
 from_rows = join(self.tables, env)
 filtered_rows = filter(self.filter_fn, from_rows)
 return map(self.make_row, filtered_rows)

Simplified version of http://composingprograms.com/examples/sql/sql_exec.py

A Select Class

The SQL parser creates an instance of the Select class for each select statement

11

>>> class Select:
 """select [columns] from [tables] where [condition]."""
 def __init__(self, columns, tables, condition):
 self.columns = columns
 self.tables = tables
 self.condition = condition
 self.make_row = create_make_row(self.columns)
 def execute(self, env):
 """Join, filter, and map rows from tables to columns."""
 from_rows = join(self.tables, env)
 filtered_rows = filter(self.filter_fn, from_rows)
 return map(self.make_row, filtered_rows)
 def filter_fn(self, row):
 if self.condition:
 return eval(self.condition, row)
 else:
 return True

Simplified version of http://composingprograms.com/examples/sql/sql_exec.py

Creating Row Classes Dynamically

Each select statement creates a table with new columns, represented by a new class

12

Creating Row Classes Dynamically

Each select statement creates a table with new columns, represented by a new class

12

>>> def create_make_row(description):
 """Return a function from an input environment (dict) to an output row.

 description -- a comma-separated list of [expression] as [column name]
 """

Creating Row Classes Dynamically

Each select statement creates a table with new columns, represented by a new class

12

>>> def create_make_row(description):
 """Return a function from an input environment (dict) to an output row.

 description -- a comma-separated list of [expression] as [column name]
 """
 columns = description.split(", ")

Creating Row Classes Dynamically

Each select statement creates a table with new columns, represented by a new class

12

>>> def create_make_row(description):
 """Return a function from an input environment (dict) to an output row.

 description -- a comma-separated list of [expression] as [column name]
 """
 columns = description.split(", ")
 expressions, names = [], []

Creating Row Classes Dynamically

Each select statement creates a table with new columns, represented by a new class

12

>>> def create_make_row(description):
 """Return a function from an input environment (dict) to an output row.

 description -- a comma-separated list of [expression] as [column name]
 """
 columns = description.split(", ")
 expressions, names = [], []
 for column in columns:

Creating Row Classes Dynamically

Each select statement creates a table with new columns, represented by a new class

12

>>> def create_make_row(description):
 """Return a function from an input environment (dict) to an output row.

 description -- a comma-separated list of [expression] as [column name]
 """
 columns = description.split(", ")
 expressions, names = [], []
 for column in columns:
 if " as " in column:
 expression, name = column.split(" as ")

Creating Row Classes Dynamically

Each select statement creates a table with new columns, represented by a new class

12

>>> def create_make_row(description):
 """Return a function from an input environment (dict) to an output row.

 description -- a comma-separated list of [expression] as [column name]
 """
 columns = description.split(", ")
 expressions, names = [], []
 for column in columns:
 if " as " in column:
 expression, name = column.split(" as ")
 else:
 expression, name = column, column

Creating Row Classes Dynamically

Each select statement creates a table with new columns, represented by a new class

12

>>> def create_make_row(description):
 """Return a function from an input environment (dict) to an output row.

 description -- a comma-separated list of [expression] as [column name]
 """
 columns = description.split(", ")
 expressions, names = [], []
 for column in columns:
 if " as " in column:
 expression, name = column.split(" as ")
 else:
 expression, name = column, column
 expressions.append(expression)
 names.append(name)

Creating Row Classes Dynamically

Each select statement creates a table with new columns, represented by a new class

12

>>> def create_make_row(description):
 """Return a function from an input environment (dict) to an output row.

 description -- a comma-separated list of [expression] as [column name]
 """
 columns = description.split(", ")
 expressions, names = [], []
 for column in columns:
 if " as " in column:
 expression, name = column.split(" as ")
 else:
 expression, name = column, column
 expressions.append(expression)
 names.append(name)
 row = namedtuple("Row", names)

Creating Row Classes Dynamically

Each select statement creates a table with new columns, represented by a new class

12

>>> def create_make_row(description):
 """Return a function from an input environment (dict) to an output row.

 description -- a comma-separated list of [expression] as [column name]
 """
 columns = description.split(", ")
 expressions, names = [], []
 for column in columns:
 if " as " in column:
 expression, name = column.split(" as ")
 else:
 expression, name = column, column
 expressions.append(expression)
 names.append(name)
 row = namedtuple("Row", names)
 return lambda env: row(*[eval(e, env) for e in expressions])

Joining Rows

Joining creates a dictionary with all names and aliases for each combination of rows

13

(Demo)

Joining Rows

Joining creates a dictionary with all names and aliases for each combination of rows

13

(Demo)

>>> from itertools import product

Joining Rows

Joining creates a dictionary with all names and aliases for each combination of rows

13

(Demo)

>>> from itertools import product
>>> def join(tables, env):
 """Return an iterator over dictionaries from names to values in a row."""
 names = tables.split(", ")
 joined_rows = product(*[env[name] for name in names])
 return map(lambda rows: make_env(rows, names), joined_rows)

Joining Rows

Joining creates a dictionary with all names and aliases for each combination of rows

13

(Demo)

>>> from itertools import product
>>> def join(tables, env):
 """Return an iterator over dictionaries from names to values in a row."""
 names = tables.split(", ")
 joined_rows = product(*[env[name] for name in names])
 return map(lambda rows: make_env(rows, names), joined_rows)
>>> def make_env(rows, names):
 """Create an environment of names bound to values."""
 env = dict(zip(names, rows))

Joining Rows

Joining creates a dictionary with all names and aliases for each combination of rows

13

(Demo)

>>> from itertools import product
>>> def join(tables, env):
 """Return an iterator over dictionaries from names to values in a row."""
 names = tables.split(", ")
 joined_rows = product(*[env[name] for name in names])
 return map(lambda rows: make_env(rows, names), joined_rows)
>>> def make_env(rows, names):
 """Create an environment of names bound to values."""
 env = dict(zip(names, rows))
 for row in rows:
 for name in row._fields:
 env[name] = getattr(row, name)

Joining Rows

Joining creates a dictionary with all names and aliases for each combination of rows

13

(Demo)

>>> from itertools import product
>>> def join(tables, env):
 """Return an iterator over dictionaries from names to values in a row."""
 names = tables.split(", ")
 joined_rows = product(*[env[name] for name in names])
 return map(lambda rows: make_env(rows, names), joined_rows)
>>> def make_env(rows, names):
 """Create an environment of names bound to values."""
 env = dict(zip(names, rows))
 for row in rows:
 for name in row._fields:
 env[name] = getattr(row, name)
 return env

SQL Interpreter Examples

Interpreting SQL Using Python

Fill in the blanks in this interactive Python session that interprets these SQL statements

15

Interpreting SQL Using Python

Fill in the blanks in this interactive Python session that interprets these SQL statements

15

create table cities as
 select 38 as lat, 122 as lon, "Berkeley" as name union
 select 42, 71, "Cambridge" union
 select 45, 93, "Minneapolis";

Interpreting SQL Using Python

Fill in the blanks in this interactive Python session that interprets these SQL statements

15

create table cities as
 select 38 as lat, 122 as lon, "Berkeley" as name union
 select 42, 71, "Cambridge" union
 select 45, 93, "Minneapolis";

>>> City = namedtuple("City", ["lat", "lon", "name"])
>>> cities = [City(38, 122, "Berkeley"), City(42, 71, "Cambridge"), City(43, 93, "Minneapolis")]

Interpreting SQL Using Python

Fill in the blanks in this interactive Python session that interprets these SQL statements

15

create table cities as
 select 38 as lat, 122 as lon, "Berkeley" as name union
 select 42, 71, "Cambridge" union
 select 45, 93, "Minneapolis";
select 60*(lat-38) as north from cities where name != "Berkeley";

>>> City = namedtuple("City", ["lat", "lon", "name"])
>>> cities = [City(38, 122, "Berkeley"), City(42, 71, "Cambridge"), City(43, 93, "Minneapolis")]

Interpreting SQL Using Python

Fill in the blanks in this interactive Python session that interprets these SQL statements

15

create table cities as
 select 38 as lat, 122 as lon, "Berkeley" as name union
 select 42, 71, "Cambridge" union
 select 45, 93, "Minneapolis";
select 60*(lat-38) as north from cities where name != "Berkeley";

>>> City = namedtuple("City", ["lat", "lon", "name"])
>>> cities = [City(38, 122, "Berkeley"), City(42, 71, "Cambridge"), City(43, 93, "Minneapolis")]

>>> s = Select(________________________, ________________, _____________________________________)

>>> for row in s.execute(___):
... print(row)
...

Interpreting SQL Using Python

Fill in the blanks in this interactive Python session that interprets these SQL statements

15

create table cities as
 select 38 as lat, 122 as lon, "Berkeley" as name union
 select 42, 71, "Cambridge" union
 select 45, 93, "Minneapolis";
select 60*(lat-38) as north from cities where name != "Berkeley";

>>> City = namedtuple("City", ["lat", "lon", "name"])
>>> cities = [City(38, 122, "Berkeley"), City(42, 71, "Cambridge"), City(43, 93, "Minneapolis")]

>>> s = Select(________________________, ________________, _____________________________________)

>>> for row in s.execute(___):
... print(row)
...
Row(north=240)
Row(north=300)

Interpreting SQL Using Python

Fill in the blanks in this interactive Python session that interprets these SQL statements

15

create table cities as
 select 38 as lat, 122 as lon, "Berkeley" as name union
 select 42, 71, "Cambridge" union
 select 45, 93, "Minneapolis";
select 60*(lat-38) as north from cities where name != "Berkeley";

>>> City = namedtuple("City", ["lat", "lon", "name"])
>>> cities = [City(38, 122, "Berkeley"), City(42, 71, "Cambridge"), City(43, 93, "Minneapolis")]

>>> s = Select(________________________, ________________, _____________________________________)

>>> for row in s.execute(___):
... print(row)
...
Row(north=240)
Row(north=300)

>>> class Select:
 """select [columns] from [tables] where [condition]."""
 def __init__(self, columns, tables, condition):
 ...
 def execute(self, env):
 ...

Interpreting SQL Using Python

Fill in the blanks in this interactive Python session that interprets these SQL statements

15

create table cities as
 select 38 as lat, 122 as lon, "Berkeley" as name union
 select 42, 71, "Cambridge" union
 select 45, 93, "Minneapolis";
select 60*(lat-38) as north from cities where name != "Berkeley";

>>> City = namedtuple("City", ["lat", "lon", "name"])
>>> cities = [City(38, 122, "Berkeley"), City(42, 71, "Cambridge"), City(43, 93, "Minneapolis")]

>>> s = Select(________________________, ________________, _____________________________________)

>>> for row in s.execute(___):
... print(row)
...
Row(north=240)
Row(north=300)

>>> class Select:
 """select [columns] from [tables] where [condition]."""
 def __init__(self, columns, tables, condition):
 ...
 def execute(self, env):
 ...

'60*(lat-38) as north'

Interpreting SQL Using Python

Fill in the blanks in this interactive Python session that interprets these SQL statements

15

create table cities as
 select 38 as lat, 122 as lon, "Berkeley" as name union
 select 42, 71, "Cambridge" union
 select 45, 93, "Minneapolis";
select 60*(lat-38) as north from cities where name != "Berkeley";

>>> City = namedtuple("City", ["lat", "lon", "name"])
>>> cities = [City(38, 122, "Berkeley"), City(42, 71, "Cambridge"), City(43, 93, "Minneapolis")]

>>> s = Select(________________________, ________________, _____________________________________)

>>> for row in s.execute(___):
... print(row)
...
Row(north=240)
Row(north=300)

>>> class Select:
 """select [columns] from [tables] where [condition]."""
 def __init__(self, columns, tables, condition):
 ...
 def execute(self, env):
 ...

'60*(lat-38) as north' 'cities'

Interpreting SQL Using Python

Fill in the blanks in this interactive Python session that interprets these SQL statements

15

create table cities as
 select 38 as lat, 122 as lon, "Berkeley" as name union
 select 42, 71, "Cambridge" union
 select 45, 93, "Minneapolis";
select 60*(lat-38) as north from cities where name != "Berkeley";

>>> City = namedtuple("City", ["lat", "lon", "name"])
>>> cities = [City(38, 122, "Berkeley"), City(42, 71, "Cambridge"), City(43, 93, "Minneapolis")]

>>> s = Select(________________________, ________________, _____________________________________)

>>> for row in s.execute(___):
... print(row)
...
Row(north=240)
Row(north=300)

>>> class Select:
 """select [columns] from [tables] where [condition]."""
 def __init__(self, columns, tables, condition):
 ...
 def execute(self, env):
 ...

'60*(lat-38) as north' 'cities' 'name != "Berkeley"'

Interpreting SQL Using Python

Fill in the blanks in this interactive Python session that interprets these SQL statements

15

create table cities as
 select 38 as lat, 122 as lon, "Berkeley" as name union
 select 42, 71, "Cambridge" union
 select 45, 93, "Minneapolis";
select 60*(lat-38) as north from cities where name != "Berkeley";

>>> City = namedtuple("City", ["lat", "lon", "name"])
>>> cities = [City(38, 122, "Berkeley"), City(42, 71, "Cambridge"), City(43, 93, "Minneapolis")]

>>> s = Select(________________________, ________________, _____________________________________)

>>> for row in s.execute(___):
... print(row)
...
Row(north=240)
Row(north=300)

>>> class Select:
 """select [columns] from [tables] where [condition]."""
 def __init__(self, columns, tables, condition):
 ...
 def execute(self, env):
 ...

{"cities": cities}

'60*(lat-38) as north' 'cities' 'name != "Berkeley"'

Interpreting SQL Using Python

Fill in the blanks in this interactive Python session that interprets these SQL statements

15

create table cities as
 select 38 as lat, 122 as lon, "Berkeley" as name union
 select 42, 71, "Cambridge" union
 select 45, 93, "Minneapolis";
select 60*(lat-38) as north from cities where name != "Berkeley";

>>> City = namedtuple("City", ["lat", "lon", "name"])
>>> cities = [City(38, 122, "Berkeley"), City(42, 71, "Cambridge"), City(43, 93, "Minneapolis")]

>>> s = Select(________________________, ________________, _____________________________________)

>>> for row in s.execute(___):
... print(row)
...
Row(north=240)
Row(north=300)

>>> class Select:
 """select [columns] from [tables] where [condition]."""
 def __init__(self, columns, tables, condition):
 ...
 def execute(self, env):
 ...

{"cities": cities}

'60*(lat-38) as north' 'cities' 'name != "Berkeley"'

How many times is eval
called during this call
to s.execute? (Demo)

Database Management Systems

Database Management System Architecture

17
Architecture of a Database System by Hellerstein, Stonebreaker, and Hamilton

Query Planning

The manner in which tables are filtered, sorted, and joined affects execution time

18

Query Planning

The manner in which tables are filtered, sorted, and joined affects execution time

18

Select the parents of curly-furred dogs:

select parent from parents, dogs

 where child = name and fur = "curly";

Query Planning

The manner in which tables are filtered, sorted, and joined affects execution time

18

Select the parents of curly-furred dogs:

select parent from parents, dogs

 where child = name and fur = "curly";

Query Planning

The manner in which tables are filtered, sorted, and joined affects execution time

18

Select the parents of curly-furred dogs:

select parent from parents, dogs

 where child = name and fur = "curly";

Query Planning

The manner in which tables are filtered, sorted, and joined affects execution time

18

Select the parents of curly-furred dogs:

select parent from parents, dogs

 where child = name and fur = "curly";

Query Planning

The manner in which tables are filtered, sorted, and joined affects execution time

18

Select the parents of curly-furred dogs:

select parent from parents, dogs

 where child = name and fur = "curly";

Join all rows of parents to all rows of dogs, filter by child = name and fur = "curly"

Query Planning

The manner in which tables are filtered, sorted, and joined affects execution time

18

Select the parents of curly-furred dogs:

select parent from parents, dogs

 where child = name and fur = "curly";

Join all rows of parents to all rows of dogs, filter by child = name and fur = "curly"

Join only rows of parents and dogs where child = name, filter by fur = "curly"

Query Planning

The manner in which tables are filtered, sorted, and joined affects execution time

18

Select the parents of curly-furred dogs:

select parent from parents, dogs

 where child = name and fur = "curly";

Join all rows of parents to all rows of dogs, filter by child = name and fur = "curly"

Join only rows of parents and dogs where child = name, filter by fur = "curly"

Filter dogs by fur = "curly", join result with all rows of parents, filter by child = name

Query Planning

The manner in which tables are filtered, sorted, and joined affects execution time

18

Select the parents of curly-furred dogs:

select parent from parents, dogs

 where child = name and fur = "curly";

Join all rows of parents to all rows of dogs, filter by child = name and fur = "curly"

Join only rows of parents and dogs where child = name, filter by fur = "curly"

Filter dogs by fur = "curly", join result with all rows of parents, filter by child = name

Filter dogs by fur = "curly", join only rows of result and parents where child = name

